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Achieving secure, universal, and fine-grained
query results verification for secure search

scheme over encrypted cloud data
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Abstract—Secure search techniques over encrypted cloud data allow an authorized user to query data files of interest by submitting
encrypted query keywords to the cloud server in a privacy-preserving manner. However, in practice, the returned query results may
be incorrect or incomplete in the dishonest cloud environment. For example, the cloud server may intentionally omit some qualified
results to save computational resources and communication overhead. Thus, a well-functioning secure query system should provide a
query results verification mechanism that allows the data user to verify results. In this paper, we design a secure, easily integrated, and
fine-grained query results verification mechanism, by which, given an encrypted query results set, the query user not only can verify
the correctness of each data file in the set but also can further check how many or which qualified data files are not returned if the set is
incomplete before decryption. The verification scheme is loose-coupling to concrete secure search techniques and can be very easily
integrated into any secure query scheme. We achieve the goal by constructing secure verification object for encrypted cloud data.
Furthermore, a short signature technique with extremely small storage cost is proposed to guarantee the authenticity of verification
object and a verification object request technique is presented to allow the query user to securely obtain the desired verification object.
Performance evaluation shows that the proposed schemes are practical and efficient.

Index Terms—Cloud computing, Query results verification, Secure query, Verification object.
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1 INTRODUCTION
1.1 Motivation

C LOUD computing is a model for enabling ubiqui-
tous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction
[1]. Driven by the abundant benefits brought by the
cloud computing such as cost saving, quick deployment,
flexible resource configuration, etc., more and more en-
terprises and individual users are taking into account
migrating their private data and native applications to
the cloud server. A matter of public concern is how to
guarantee the security of data that is outsourced to a
remote cloud server and breaks away from the direct
control of data owners [2]. Encryption on private data
before outsourcing is an effective measure to protect
data confidentiality [3]. However, encrypted data make
effective data retrieval a very challenging task.

To address the challenge (i.e., search on encrypted
data), Song et al. first introduced the concept of search-
able encryption and proposed a practical technique that
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allows users to search over encrypted data through
encrypted query keywords in [4]. Later, many searchable
encryption schemes were proposed based on symmetric
key and public-key setting to strengthen security and
improve query efficiency [5], [6], [7], [8], [9], [10], [11],
[12]. Recently, with the growing popularity of cloud
computing, how to securely and efficiently search over
encrypted cloud data becomes a research focus. Some
approaches have been proposed based on traditional
searchable encryption schemes in [13], [14], [15], [16],
[17], [18], [19], [20], [21], which aim to protect data
security and query privacies with better query efficient
for cloud computing. However, all of these schemes are
based on an ideal assumption that the cloud server is an
”honest-but-curious” entity and keeps robust and secure
software/hardware environments. As a result, correct
and complete query results always be unexceptionally
returned from the cloud server when a query ends every
time. However, in practical applications, the cloud server
may return erroneous or incomplete query results once
he behaves dishonestly for illegal profits such as saving
computation and communication cost or due to possible
software/hardware failure of the server [22].

Therefore, the above fact usually motivates data users
to verify the correctness and completeness of query
results. Some researchers proposed to integrate the query
results verification mechanisms to their secure search
schemes [23], [24], [25], [26], (e.g., embedding verification
information into the specified secure indexes or query
results). Upon receiving query results, data users use
specified verification information to verify their correct-
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ness and completeness. There are two limitations in these
schemes:

1) These verification mechanisms provide a coarse-
grained verification, i.e., if the query result set contains
all qualified and correct data files, then these schemes
reply yes, otherwise reply no. Thus, if the verification
algorithm outputs no, a data user has to abort the
decryption for all query results despite only one query
result is incorrect.

2) These verification mechanisms are generally tightly
coupled to corresponding secure query constructions
and have not universality.

In a search process, for a returned query results set
that contains multiple encrypted data files, a data user
may wish to verify the correctness of each encrypted
data file (thus, he can remove incorrect results and retain
the correct ones as the ultima query results) or wants
to check how many or which qualified data files are
not returned on earth if the cloud server intentionally
omits some query results. These information can be
regarded as a hard evidence to punish the cloud server.
This is challenging to achieve the fine-grained verifi-
cations since the query and verification are enforced
in the encrypted environment. In [27], we proposed a
secure and fine-grained query results verification scheme
by constructing the verification object for encrypted out-
sourced data files. When a query ends, the query results
set along with the corresponding verification object are
returned together, by which the query user can accu-
rately verify: 1) the correctness of each encrypted data
file in the results set; 2) how many qualified data files
are not returned and 3) which qualified data files are
not returned. Furthermore, our proposed verification
scheme is lightweight and loose-coupling to concrete
secure query schemes and can be very easily equipped
into any secure query scheme for cloud computing.

However, some necessary extensions and important
works need to be further supplied to perfect our original
scheme such as detailed performance evaluation and
formal security definition and proof. More importantly,
in the dishonest cloud environment, the scheme suffers
from the following two important security problems:

1) Just as possibly tampering or deleting query results,
the dishonest cloud server may also tamper or forge
verification objects themselves to make the data user
impossible to perform verification operation. Specially,
once the cloud server knows that the query results veri-
fication scheme is provided in the secure search system,
he may return inveracious verification object to escape
responsibilities of misbehavior.

2) When a data user wants to obtain the desired
verification object, some important information will be
revealed such as which verification objects are being
or have been requested before frequently, etc. These
information may leak query user’s privacy and expose
some useful contents about data files. More importantly,
these exposed information may become temptations of
misbehavior for the cloud server. We will detailedly

describe this part content in Section 7.

1.2 Our Contributions
In this paper, we extend and reinforce our work in [27]
to make it more applicable in the cloud environment and
more secure to against dishonest cloud server. The main
contributions of this paper are summarized as follows:

1) We formally propose the verifiable secure search
system model and threat model and design a fine-
grained query results verification scheme for secure
keyword search over encrypted cloud data.

2) We propose a short signature technique based on
certificateless public-key cryptography to guaran-
tee the authenticity of the verification objects them-
selves.

3) We design a novel verification object request tech-
nique based on Paillier Encryption, where the
cloud server knows nothing about what the data
user is requesting for and which verification objects
are returned to the user.

4) We provide the formal security definition and proof
and conduct extensive performance experiments to
evaluate the accuracy and efficiency of our pro-
posed scheme.

The rest of this paper is organized as follows. We
reviews the related work in Section 2. Section 3 illustrates
background and presents the preliminary techniques.
We propose the query results verification scheme in
Section 4 and the a discussion of the scheme is shown in
Section 5. We describe the signature and authentication
of verification object in Section 6. In Section 7, a secure
verification object request mechanism is proposed. We
analyze the security and evaluate performances of our
proposed scheme in Sections 8 and 9. In Section 10, we
conclude the paper.

2 RELATED WORK

2.1 Secure Search in Cloud Computing
Essentially, the secure search is thus a technique that
allows an authorized data user to search over the data
owner’s encrypted data by submitting encrypted query
keywords in a privacy-preserving manner and is an
effective extension of traditional searchable encryption
to adapt for the cloud computing environment. Moti-
vated by the effective information retrieve on encrypted
outsourced cloud data, Wang et al. first proposed a
keyword-based secure search scheme [13] and later the
secure keyword search issues in cloud computing have
been adequately researched [14], [15], [16], [17], [18],
[19], [20], [21], which aim to continually improve search
efficiency, reduce communication and computation cost,
and enrich the category of search function with bet-
ter security and privacy protection. A common basic
assumption of all these schemes is that the cloud is
considered to be an ”honest-but-curious” entity as well
as always keeps robust and secure software/hardware
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environments. As a result, under the ideal assumption,
the correct and complete query results always be unex-
ceptionally returned from the cloud server when a query
ends every time.

2.2 Verifiable Secure Search in Cloud Computing
In practical applications, the cloud server may return
erroneous or false search results once he behaves dis-
honestly for illegal profits or due to possible soft-
ware/hardware failure of the cloud server. Because of
the possible data corruption under a dishonest setting,
serval research works have been proposed to allow the
data user to enforce query results verification in the
secure search fields for cloud computing. In [23], Wang et
al. applied hash chain technique to implement the com-
pleteness verification of query results by embedding the
encrypted verification information into their proposed
secure searchable index. In [24], Sun et al. used encrypted
index tree structure to implement secure query result-
s verification functionality. In this scheme, when the
query ends, the cloud server returns query results along
with a minimum encrypted index tree, then the data
user searches this minimum index tree using the same
search algorithm as the cloud server did to finish result
verification. Zheng et al. [25] constructed a verifiable
secure query scheme over encrypted cloud data based
on attribute-based encryption technique (ABE) [28] in the
public-key setting. Sun et al. [26] referred to the Merkle
hash tree and applied Pairing operations to implement
the correctness and completeness verification of query
results for keyword search over large dynamic encrypted
cloud data. However, these secure verification schemes
cannot achieve our proposed fine-grained verification
goals. Furthermore, these verification mechanisms are
generally tightly coupled to corresponding secure query
schemes and have not universality.

3 BACKGROUND

To clarify our proposed problems, in this section, we
present our system model, threat model, and several
preliminaries used to implement our scheme.

3.1 System Model
The system model of the secure search over encrypted
cloud data usually includes three entities: data owners,
data users, and the cloud server, which describes the
following scenario: data owners encrypt their private
data and upload them to cloud server for enjoying
the abundant benefits brought by the cloud computing
as well as guaranteeing data security. Meanwhile, the
secure searchable indexes are also constructed to sup-
port effective keyword search over encrypted outsourced
data. An authorized data user obtains interested data
files from the cloud server by submitting query trap-
doors (encrypted query keywords) to the cloud server,
who performs search over secure indexes according to
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Fig. 1. A system model of verifiable secure search over
encrypted cloud data

trapdoors and sends the query results to the data user.
The above application scenario is based on an ideal

assumption that the cloud server is considered as an
honest entity and always honestly returns all quali-
fied query results. In this paper, we consider a more
challenging model, where the query results would be
maliciously deleted or tampered by the dishonest cloud
server. When the query results face the risks that are
deleted or tampered, a well-functioning secure query
system should provide a mechanism that allows the
data user to verify the correctness and completeness of
query results. To achieve the results verification goal, we
propose to construct secure verification objects for data
files that are outsourced to the cloud with encrypted
data and secure indexes together. The query results along
with corresponding data verification object are returned
to the data user when a query ends. The improved
system model of verifiable secure search over encrypted
cloud data is illustrated in Fig. 1.

3.2 Threat Model
In this paper, compared with the previous works, an
important distinction about the threat model is that the
cloud is considered to be an untrusted entity. More
specifically, first of all, the cloud server tries to gain some
valuable information from encrypted data files, secure
indexes, and verification objects (e.g., a misbehaving
cloud administrator aims at obtaining these information
for possible monetary profits). Then, the cloud server
would intentionally return false search results for saving
computation resource or communication cost. Further, if
the cloud server knows a query results verification mech-
anism is embedded, he may tamper or forge verification
objects to escape responsibilities of misbehavior.

Similar to the previous works, both data owners and
authorized data users are considered to be trusted in our
threat model.

3.3 Preliminaries
3.3.1 Bloom Filter
A Bloom Filter [29] is a space-efficient probabilistic data
structure which is used to test whether an element is a
member of a set. An empty Bloom filter is a bit array
of m bits, where all bits are set to 0 initially. Given
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a set S = {a1, a2, ..., an} of n elements, in order to
insert an element a ∈ S into a Bloom filter, it needs
to use l independent hash functions h1, ..., hl with the
same output range [0,m− 1] to hash a to get l different
positions in the Bloom filter, and sets all these positions
to 1. To determine whether an element b is in S or not, it
checks whether all the positions corresponding to hi(b)
equal to 1, 1 ≤ i ≤ l. If all are 1, then a ∈ S or resulting
in a false positive due to hash collision. If any one of
these positions is 0, then b /∈ S. We can control false
positive rate by adjusting Bloom Filter parameters. If n
elements are inserted into an m-bit Bloom filter which
uses l independent hash functions, the false positive rate
is fp = (1− (1− 1

m )ln)l, where 1
m → 0, fp ≈ (1− e− lnm )l.

Therefore, given m and n, when l = m
n ln 2, the minimum

false positive rate is 2−l. As a matter of fact, the standard
Bloom Filter does not support element deletion opera-
tions because each bit of the Bloom Filter cannot record
the number of hash collisions when inserting different
elements. To allow effective element deletion, in [30], Fan
et al. designed Counting Bloom Filter by using fixed size
counters to represent an element instead of single bits.
When an element is inserted, the corresponding counters
are incremented by 1 and the corresponding counters are
decreased by 1 when an element is deleted.

3.3.2 Pseudo Random Function
A pseudo-random function [31] prf : {0, 1}∗ × {0, 1}τ →
{0, 1}s is a computationally efficient function, which
maps an arbitrary length string x ∈ {0, 1}∗ to a random
s-bit string y under a given key λ ∈ {0, 1}τ such that y
looks like being randomly chosen from the range space
{0, 1}s. It satisfies the following properties:
• Computability: Given x ∈ {0, 1}∗ and λ ∈ {0, 1}τ ,

there is a polynomial time algorithm to compute
prf(λ, x).

• Collision Resistance: Give two distinct numbers
x, y ∈ {0, 1}∗ and λ ∈ {0, 1}τ , it is computationally
infeasible to satisfy prf(λ, x) = prf(λ, y).

• One-wayness: Give the value prf(λ, x), it is compu-
tationally infeasible to calculate x and λ.

3.3.3 Bilinear Map
Let G1 and G2 be two cyclic multiplicative groups with
the same large prime order q. A bilinear map [32], e :
G1 ×G1 → G2, satisfies the following properties:
• Computable: For any Q,Z ∈ G1, there is a polyno-

mial time algorithm to compute e(Q,Z) ∈ G2.
• Bilinear: For all x, y ∈ Z∗q and Q,Z ∈ G1, the equality
e(Qx, Zy) = e(Q,Z)xy holds.

• Non-degenerate: If g, h are generators of G1, then
e(g, h) is a generator of G2.

3.3.4 Paillier Encryption
Paillier encryption [33] is a public-key encryption
scheme with the remarkable additive homomorphic
property and normally consists of Gen, Enc, and Dec
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three polynomial-time algorithms. We briefly introduce
these algorithms as follows:
• Gen(1n): The probabilistic polynomial-time algo-

rithm takes the secure parameter n as input and
outputs (N, p, q, ψ(N)) where N = pq, p and q are n-
bit primes, and ψ(N) = (p−1)(q−1). The public key
is pk = N and the private key is sk =< N,ψ(N) >.

• Enc(pk,m): The Enc is a probabilistic polynomial-
time algorithm, which takes the public key pk and
a message m as input and outputs the ciphertext of
m

c = [(1 +N)m · rN mod N2]

where r is a randomly chosen number from Z∗N .
• Dec(sk, c): The Dec is a deterministic polynomial-

time algorithm, which takes the private key sk and
the ciphertext c of the message m as input and
outputs m

m =

[
[cψ(N) mod N2]− 1

N
· ψ(N)−1 mod N

]
4 QUERY RESULTS VERIFICATION SCHEME

4.1 Scheme Overview and Problem Definition
Fig. 2 shows an overview of the query results verification
process. In brief, when a query ends, both query results
and corresponding verification objects are returned to
the data user by the cloud server. Upon receiving these
data, the data user first checks the authenticity of verifi-
cation objects and then continued to verify query results
according to the verification objects if verification objects
pass the test; otherwise, the data user rejects this query.
The notations used in this paper are shown in Table 1.

In what follows, we further state our proposed prob-
lem. Given F , the data owner first forms the files
collection {Fw}w∈W and uses any semantically secure
encryption scheme such as AES to encrypt {Fw}w∈W
to get the ciphertext files collection {Cw}w∈W . Given a
query trapdoor of keyword w, the cloud server returns
Rw to the data user. Theoretically, the set Rw should
be equal to Cw, however, which may be incomplete
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TABLE 1
Notations used in this paper

Notations Description
F The plaintext set of data files
C The ciphertext set of data files
W The keywords dictionary
w Any keyword in W

Fw The set of data files containing the keyword w

Cw The corresponding cipertext set of Fw

Rw The set of query results containing the keyword w

V Ow The verification object of Cw

prfk A pseudo-random function with the key k

H A hash function family with l hash functions h1, h2
..., hl with the same range [0,m− 1]

|α| If α is a string, |α| denotes the bit length of α;
If α is a set, |α| denotes the cardinality of α

(i.e., |Rw| < |Cw|) or contain some incorrect data due
to the possible misbehaviours of the dishonest cloud
server. To allow an authorized data user to verify the
query results Rw, our main idea is that the data owner
constructs a secure verification object V Ow for each Cw
in {Cw}w∈W , by which the data user can efficiently verify
the correctness and completeness of the returned query
result set Rw. Let {V Ow}w∈W denote the corresponding
verification objects collection of {Cw}w∈W .

4.2 The Verification Object Construction

To maximize reduce storage and communication cost
and achieve privacy guarantee of the verification objects,
in this paper, we will utilize Counting Bloom Filters
and the pseudo-random function prfk to construct our
verification objects, on which the authorized data user
can efficiently perform query results verification. Next,
we elaborate on the construction process of verification
objects as follows.

Given a ciphertext set Cw of Fw, the data owner
first generates a Counting Bloom Filter V Ow with m
counters, in which each counter is set to be 0 initially.
Then, for each encrypted data file c ∈ Cw, he uses
the pseudo-random function prfk under the key k to
calculate the secret value prfk(c). Further, he continues
to uses l hash functions h1, ..., hl of the hash function
family H to hash the prfk(c) to get h1(prfk(c) ∈ [0,m−
1], ..., hl(prfk(c)) ∈ [0,m − 1]. Lastly, the data owner
inserts these hash values into the Counting Bloom Filter
V Ow by performing operations that the corresponding
counter V Ow[hi(prf(c))], 1 ≤ i ≤ l is increased by 1. Our
basic idea is to let the V Ow represent the verification
object of Cw.

However, Cw’s verification object V Ow reveals the
number of the data files contained in Cw and the
cloud server can easily obtain the statistical information
that how many data files are in Cw by calculating∑m−1
i=0 V Ow[i])/l. To avoid revealing the size of the set

Cw, an effective method is to all V Ows in {V Ow}w∈W

have the same value (
∑m−1
i=0 V Ow[i]) by padding dif-

ferent number of random elements for different verifi-
cation object V Ow. However, directly padding random
elements into V Ow by hashing these random elements
to the range [0,m − 1] will disable the effective query
results verification since the V Ow contains some invalid
data (i.e., random elements).

To address this problem, we propose to let the data
owner generate a pad region only used for random
elements pad. Specifically, given a set Cw, the data owner
first generates a Bloom Filter V Ow with n counters and
inserts all data files in Cw into the first m counters using
prfk and H. Then, let |Cw|max denote the maximum
number of data files containing some keyword w ∈ W ,
i.e., |Cw|max = max{|Cwi |, i = 1, ..., |W |}, the data owner
generates l × |Cw|max −

∑m−1
i=0 V Ow[i] random strings

{R1, R2, ...} and uses a pad function P with the range
[m,n − 1] to compute P(R), the corresponding position
V Ow[P(R)] is increased by 1. The pad function P can be
defined as:

P(x) = m+ (prfk(x) mod (n−m)), x ∈ {0, 1}∗

After padding, all V Ows in {V Ow}w∈W satisfy:

n−1∑
j=0

(V Ow[j]) = l × |Cw|max

Fig. 3 shows an example of our verification object.
The whole process of constructing verification objects is
shown in Algorithm 1.

Algorithm 1 Constructing Verification Objects
Input:

The ciphertext files collection C = {Cw}w∈W
Output:

The verification objects collection {V Ow}w∈W
1: Generate an empty set VO={};
2: for each Cw ∈ C do
3: Generate a Counting Bloom Filter V Ow with n

counters;
4: for each c ∈ Cw do
5: Calculate vc = prfk(c);
6: Calculate h1(vc), ..., hl(vc) using hash function

family H;
7: V Ow[h1(vc)], ..., V Ow[hl(vc)] are increased by 1

in V Ow;
8: end for
9: Generate l × (|Cw|max − |Cw|) random strings R1,

R2, ...
10: Calculate P(R1),P(R2), ...
11: V Ow[P(R1)], V Ow[P(R2)], ... are increased by 1 in

V Ow;
12: Add the V Ow into VO
13: end for
14: return VO = {V Ow}w∈W
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Fig. 3. An example of the verification object

4.3 Verifying the Correctness and Completeness of
Query Results

When a query ends, the query results set and corre-
sponding verification object are together returned to the
query user, who verifies the correctness and complete-
ness of query results based on the verification object.
Our proposed query results verification scheme not only
allows the query user to easily verify the correctness of
each encrypted data file in the query results set, but
also enables the data user to efficiently perform com-
pleteness verification before decrypting query results.
More importantly, for an incomplete query results set,
our verification objects can definitely tell the data user
that the cloud server has omitted how many qualified
data files for a query, which is a significant advantage
compared with the previous related works.

We give an example to illustrate how to perform query
results verifications. Assume that an authorized data
user submits an encrypted query keyword w to the cloud
server, the cloud server performs query operations and
returns back the query results set Rw along with the
corresponding verification object V Ow. The data user
only needs two steps to finish the correctness verification
for each data file c in Rw. First, the data user uses the
shared key k and the hash functions familyH to calculate
h1(prfk(c)), ..., hl(prfk(c)). Second, he checks all counter-
s correspond to V Ow[h1(prfk(c))], ..., V Ow[hl(prfk(c))].
If these counters are all greater than 0, then c is a correct
query result; otherwise, c is regarded as an incorrectness
query result as long as one of them is equal to 0 and
should be removed from Rw. The correctness verification
process is shown in Algorithm 2.

In terms of the query results completeness verifica-
tion, our well constructed verification object is able to
allow the data user to quickly find out the number of
data files that satisfy the query yet are not returned
by the cloud server if the cloud server does intention-
ally omit some data files. The verification process is
described in detail as follows. Given Rw and V Ow,
the data user first invokes the Algorithm 2 to do the
correctness verification. Then, If |Rw| 6= 0, for each cor-
rect data file c, he calculates h1(prfk(c)), ..., hl(prfk(c))
using the shared key k and the corresponding coun-
ters V Ow[h1(prfk(c))], ..., V Ow[hl(prfk(c))] in V Ow are
decreased by 1. Finally, the data user calculates the

Algorithm 2 Correctness Verification
Input:

The query results set Rw and corresponding verifi-
cation object V Ow for some query keyword w.

Output:
Rw

1: for each c in Rw do
2: Calculate vc = prfk(c);
3: Calculate h1(vc), ..., hl(vc) using hash function

family H;
4: Check all counters h1(vc), ..., hl(vc) in V Ow. If one

of them is equal to 0, then remove c from Rw;
5: end for
6: return Rw.

following value:

Rem =

(m−1∑
j=0

V Ow[j]

)
/l

If Rem = 0, then the cloud server has returned back
all data files that satisfy the query; otherwise, the data
user can confirm that the cloud server has omitted
Rem qualified data files in the query. The completeness
verification is shown in Algorithm 3.

Algorithm 3 Completeness Verification
Input:

The query results set Rw that has past correctness
verification, and corresponding verification object
V Ow for some query keyword w.

Output:
The number of data files that have not been returned
by the cloud server Rem

1: if |Rw| 6= 0 then
2: for each c in Rw do
3: Calculate vc = prfk(c);
4: Calculate h1(vc), ..., hl(vc) using hash function

family H;
5: The corresponding counters h1(vc), ..., hl(vc) in

V Ow are decreased by 1;
6: end for
7: end if
8: Calculate Rem =

∑m−1
j=0 (V Ow[j])

l
9: return Rem.

5 DISCUSSION

5.1 About False Positive
It is worth noticing that our proposed scheme may
allow an incorrect query result to pass the correctness
verification due to the fact that Bloom Filter may yield
false positives with a certain probability because of hash
collisions. Fortunately, we can adjust the Bloom Filter
parameters to minimize the false positive rate. More
specifically, in this paper, given the bit length m of each
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verification object V Ow and the number of data files in
Cw, i.e., |Cw|, we set the number of hash functions l to
be m
|Cw| × ln 2 to minimize the false positive rate to be:

1−
(
1− 1

m

l|Cw|)l
≈ (1−e−l|Cw|/m)l = 2−l ≈ 0.6185m/|Cw|

However, the set size |Cwi | is different for different
Cwi , wi ∈W, 1 ≤ i ≤ |W |, to choose the same hash func-
tions family H with the same number of hash functions
l for all verification object in {V Ow}w∈W , we set

l =
m

|Cw|max
× ln 2

where |Cw|max is the maximum number of data files con-
taining a certain keyword w. Thus, for any set Cw′ that
satisfies |C ′w| < |Cw)|max, the false positive rate incurred
by the corresponding V Ow′ is less than 0.6185m/|Cw|max .

For example, to guarantee that the false positive rate
induced by Bloom Filter is less than 0.01, we can set the
number of hash functions to be l = log 1

2
0.01 = 7 and the

length of Bloom Filter to be m = |Cw|max log0.6185 0.01.

5.2 Size of Verification Objects

In addition, the bit length of each counter in V O should
be discussed adequately, because the huge V O will
bring heavy storage cost and communication cost, which
makes the verification object impractical. Generally, the
4 bits for each counter are sufficient for Counting Bloom
Filters. We give a simple derivation and more detailed
analysis please refer to [30]. Theoretically, the probability
that the i-th counter has been increased by j times, when
inserting the set Cw, 1 ≤ i ≤ m,w ∈ W using l hash
functions, can be denoted:

Pr(c(i) = j) =

(
|Cw|l
j

)( 1
m

)j(
1− 1

m

)|Cw|l−j
According to the Stirling’s approximation, the probabil-
ity that any counter is greater or equal j is:

Pr(c(i) ≥ j) ≤
(
|Cw)|l
j

)( 1

mj

)
≤
(
e|Cw|l
jm

)j
To minimize the false positive rate, we set l = m

|Cw| × ln 2
and further simplify the above inequality:

pr(c(i) ≥ j) ≤ m
(
e ln 2

j

)j
Hence, if we set the bit length of each counter to be 4,
obviously, when j = 16, the counter happens overflow
and the probability can be calculated as pr(c(i) ≥ 16) ≤
1.37×10−15×m. Obviously, the value is infinitesimal and
the probability of happening overflow can be ignored.

5.3 An Enhanced Completeness Verification Con-
struction
For completeness verification, a significant advantage of
our constructed verification object is that the query user
can quickly count the number of data files omitted by
the cloud server for an incomplete query result set. As
a more strict completeness verification requirement (i.e.,
which qualified data files are not returned in a query),
an enhanced verification object based on the Counting
Bloom Filter was proposed in our work [27], which
further allows the data user to definitely obtain the file
identifier of each data file that satisfies the query yet is
omitted by the cloud server, by reasonably designing the
identifiers of data files and secretly preserving them in
the corresponding verification object. Here, we are not
intend to elaborate on the verification construction to
avoid unnecessary repetition. Interested readers please
refer to [27] to obtain details about this.

6 SIGNATURE AND AUTHENTICATION OF VER-
IFICATION OBJECT

Under the dishonest threat model, the cloud server may
tamper or forge verification objects to escape respon-
sibilities of misbehaviour if it knows a query results
verification mechanism is involved in the secure search
scheme. Therefore, authenticating the verification object
itself is the first indispensable step for the data user
when he receives query results and the corresponding
verification object from the cloud server. To achieve this
goal as well as prevent the cloud server from sending
forged verification object to a data user, digital signature
over verification objects is a natural and good choose.
That is to say, on one hand, the data owner computes
a signature on each verification object using his private
key after constructing verification objects; on the other
hand, the data user verify the authenticity of verification
object using the data owner’s public key upon receiving
the specified verification object in a query.

However, traditional digital signature techniques such
as DSA require certificates to guarantee the authenticity
of public key by Certification Authority, which is gener-
ally considered to be costly to use due to expensive cer-
tificate library management and maintenance problem-
s. To eliminate the certificates, certificateless signature
schemes [34], [35], [36], [37], [38] have been proposed
based on the certificateless cryptography [39], [40]. In
this paper, we present an efficient short signature scheme
based on [34] and [36] to significantly reduce the storage
and communication cost of signatures of verification ob-
jects. Compared to above existing schemes, the signature
length of our scheme is only a half or one-third of these
schemes. In certificateless cryptography, there needs a
trusted Key Generation Center (KGC) to help the user
to generate public/private key pair, while KGC cannot
obtain user’s public/private key.

Assume that there exists a trusted KGC in our system,
o is a data owner and u denotes an authorized data user,
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our proposed certificateless signature for verification
object is composed of the following seven steps.
• Setup: Let G1 and G2 be two cyclic multiplicative

groups of prime order q, which are equipped with
an efficiently computable bilinear map e. Let g be
a generator of G1. On input a sufficiently large
secure parameter l, KGC generates system master
key mk ∈ Z∗q and system public key Spub = gmk as
well as two cryptographic one-way hash functions
H1 : {0, 1}∗ → Z∗q and H2 : {0, 1}∗ × G1 → Z∗q .
KGC opens the system public parameter params =
{G1,G2, e, q, g, Spub, H1, H2} and keeps mk as secret.

• Extract-partial-private-key: o sends his/her identity
ID ∈ {0, 1}∗ to KGC. The KGC computes QID =

H1(ID), dID = g
1

mk+QID and sends dID to o via se-
cure communication channels. KGC opens a public
value PVID = Spub · gQID to data users.

• Set-secret-value: o randomly picks up a value kID ∈
Z∗q as own secret value.

• Set-private-key: o first computes H∗1 (ID) according
to his own identity ID and then verifies whether
the following equation holds or not.

e(Spub·gH
∗
1 (ID), dID)

= e(gmk · gH
∗
1 (ID), g

1
mk+QID )

= e(gmk+H
∗
1 (ID), g

1
mk+H1(ID) )

= e(g, g)mk+H
∗
1 (ID)/mk+H1(ID)

= e(g, g)

If the above equation holds (i.e., H∗1 (ID) = H1(ID)
holds), then o confirms that his identity ID is not
tampered and o further determines the complete
private key as skID =< dID, kID > according to
the partial key dID and the secret value kID.

• Set-public-key: o computes H1(ID) and uses the
secret value kID to generate his public key:

pkID = [Spub · gH1(ID)]kID

= [Spub · gQID ]kID

= (PVID)
kID

• Sign: Given a verification object V Ow, o signs the
V Ow using his private key as follows:

σ = (dID)
1

kID+H2(VOw,pkID)

Upon receiving a query result set Rw and its verifica-
tion object V Ow, the authorized data user u first verifies
the authenticity of V Ow by invoking the verification
algorithm Ver(params, V Ow, ID, pkID, σ), which decides
whether the following equation holds or not:

e(σ, pkID · (PVID)H2(VO(w),pkID)) = e(g, g)

If the above equation holds, then u continues to verify
the correctness of Rw according to the verification object
V Ow; otherwise, u refuses this query. If the returned
V Ow is not forged or tampered with by the cloud server,

TABLE 2
Comparison of Different Signature Schemes

[34] [35] [36] [37] [38] Our
public key length (bits) 320 320 160 160 320 160
signature length (bits) 320 320 320 480 320 160

the above equation holds because (for ease writing, let
λ = H2(V Ow, pkID)):

e(σ, pkID·(PVID)H2(V Ow,pkID))

= e((dID)
1

kID+λ , pkID · (PVID)λ)

= e(g
1

mk+QID
· 1
kID+λ , (PVID)

kID+λ)

= e(g
1

(mk+QID)(kID+λ) , [Spub · gQID ]kID+λ)

= e(g
1

(mk+QID)(kID+λ) , g(mk+QID)(kID+λ))

= e(g, g)

A comparison is presented in Table 2, where the group
with 160-bit order is used to instantiate G1 and G2.

7 SECURELY REQUESTING VERIFICATION
OBJECT

Another important question is that how to obtain the
correct verification object from the set {V Ow}w∈W with-
out leaking any useful information to the cloud server.
A simple way is to organize the set {V Ow}w∈W as
{(w, V Ow)}w∈W , thus the cloud server can very easily
return back the correct verification object according to
the submitted keyword w by the data user. However,
the straightforward method compromises the security
and privacy of whole secure query system from three
aspects at least. First, the set {(w, V Ow)}w∈W contains
plaintext information of all keywords in W . Second, the
query keywords of the data user are leaked (i.e., query
privacy) when he submits a keyword w of interest to
request the corresponding V Ow; Third, the cloud knows
the associations between the keywords and verification
objects that may allow the cloud server to obtain some
useful information about data files (e.g., which data files
contain a given query keyword w).

To remedy these drawbacks, in [27], we pro-
posed to encrypt each keyword by a pseudo ran-
dom function p̃rfk and store the verification object set
{(p̃rfk(w), V Ow)}w∈W in a lookup table T. When the
data user wishes to obtain V Ow after performing a query
using keyword w, he encrypts w as p̃rfk(w) under the
shared key k and summits the ciphertext to the cloud
server. The cloud server returns back the verification
object by scanning T according to p̃rfk(w) without
knowing any underlying plaintext about w. However,
we find the construction still leaks some important in-
formation including: (1) the submitted verification object
request information, for example, whether data users
often adopt the same keyword to request verification
objects, (2) which verification object is being requested



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2709318, IEEE
Transactions on Cloud Computing

9

and returned in the current request task, and (3) which
verification objects are frequently or rarely requested.
These exposed information may become temptations of
behaving dishonestly for the dishonest cloud server. For
example, if the cloud server knows some verification
objects are returned rarely, he may maliciously delete
these data for saving storage space.

Therefore, our goal is to prevent the cloud server
from obtaining these information by using the Paillier
encryption scheme to design thus a secure verification
object request mechanism.

Now, we describe our proposed verification object
request scheme in detail. First of all, the authorized
data user generates the public/private pair (pk = N, sk)
for the Paillier encryption system, where N denotes a
large composite number. For a certain keyword wi ∈W
(assume |W | = d) that the data user wants to request the
corresponding verification object V Owi from the cloud
server, the data user sets a flag fi for wi to be 1 to
denote V Owi to be the desired verification object. For
other all keywords wj ∈ W (1 ≤ j ≤ d, j 6= i), he sets
the corresponding flag fj = 0(1 ≤ j ≤ d, j 6= i). Then,
the data user encrypts each flag fk(k = 1, 2, ..., d) using
the Paillier encryption under the public key pk and a
randomly-chosen rk ∈ Z∗N as follows:

ck = [(1 +N)fk · rNk mod N2]

Further, the data user sends the ciphertext set {ck|1 ≤
k ≤ d} to the cloud sever. Upon receiving the set,
the cloud server computes the following ciphertext for
each ck according to the corresponding verification object
V Owk in {V Ow}w∈W stored in the cloud server

c∗k = c
V Owk
k = [(1 +N)fk · rNk mod N2]V Owk

= [(1 +N)fk·V Owk · rN ·V Owkk mod N2]

= [(1 +N)fk·V Owk · (rV Owkk )N mod N2]

and further computes:

c∗ =

[ d∏
k=1

c∗k mod N2

]
=

[ d∏
k=1

c
V Owk
k mod N2

]

=

[
(1 +N)

∑d
k=1 fk·V Owk ·

( d∏
k=1

rV Owk

)N
mod N2

]

=

[
(1 +N)1·V Owi ·

( d∏
k=1

rV Owk

)N
mod N2

]

=

[
(1 +N)V Owi ·

( d∏
k=1

rV Owk

)N
mod N2

]
After finishing the above calculation, the cloud server
sends c∗ to the data user. Obviously, c∗ is an effective
Paillier encryption of the message V Owi under the public
key pk = N and the random number

∏d
k=1 (r

V Ow
k ).

Therefore, the data user can successfully decrypt c∗ with
the owned private key sk to gain the objective verifica-
tion object V Owi locally. During the whole process, the

cloud server knows nothing about which verification ob-
ject is requested and which verification object is actually
returned every time due to the undeterministic Paillier
encryption.

In addition, to verify the authenticity of returned veri-
fication object itself, the corresponding signature should
also be returned together. A common way is to attach
the signature to its verification object by σ||V O, where
|| denotes a string concatenation notation. Thus, the
verification object set can be denoted as {(σ||V O)w}w∈W .
Algorithm 4 shows the algorithm of securely obtaining
a verification object and we use Epk and Dsk to denote
the Paillier encryption and decryption respectively, for
simplicity.

Algorithm 4 Securely Obtaining Verification Object
Input:

The keyword set W, |W | = d and corresponding
verification object set {(σ||V O)w}w∈W , the submitted
keyword wi.

Output:
The objective verification object (σ||V O)wi

1: Generate the public/private pair (pk, sk)
2: for k ∈ [1, d] do
3: if wi = wk then
4: Set fk = 1 and encrypt fk as Epk(fk)
5: else
6: Set fk = 0 and encrypt fk as Epk(fk)
7: end if
8: end for
9: for each k ∈ [1, d] do

10: Calculate ck = Epk(fk)
(σ||V O)wk

11: end for
12: Calculate c∗ =

∏d
k=1 ck

13: Decrypt c∗ as V Owi = Dsk(c
∗)

14: return (σ||V O)wi .

8 SECURITY ANALYSIS

8.1 Security of Verification Object

Similar to the secure index semantic security [5], the
security of the verification object aims to capture the
notion that the verification object reveals nothing about
contents of data files. A more formal and rigorous securi-
ty definition is the verification object indistinguishability,
which is synoptically described as that, given two verifi-
cation objects V Ow, V Ow′ of set Cw, Cw′ for two different
keywords w,w′, no polynomial-time adversary A can
determine which verification object is for which data
file set with probability that is non-negligible greater
than 1/2. We use formulation of verification object in-
distinguishability to prove the semantic security of our
scheme and formally use the following game to define
the formulation.
The verification object indistinguishability game
(Ĝame): Let f denote the verification object construction
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algorithm described in Algorithm 1. There is a chal-
lenger B and a probabilistic polynomial time adversary
A in this game.

1) A asks B for the output of f for his submitted
challenging set Cw for different keyword w many
times.

2) A sends two different set Cw0 and Cw1 to B, which
are not challenged in setp 1. A continues to ask B
for the output of f for Cw. The only restriction is
that Cw is not Cw0

or Cw1
.

3) After receiving Cw0
and Cw1

, B chooses a bit b ∈
{0, 1} with probability 1/2 and invokes f(Cwb) to
output the verification object V Owb for Cwb .

4) V Owb is sent to A, A outputs his guess b′ of b. If
b = b′, the game input 1, and 0 otherwise. We say
A wins the game and succeeds if the input is 1.

Intuitively, if the verification object is indistinguishable,
the probability of A wins the game is at most negligibly
greater that 1/2, since it is easy to succeed with proba-
bility 1/2 by taking a random guess to input b′. Before
proving the security of the verification objects, we first
give the following two definitions.

Definition 1. The advantage of the probabilistic polynomial
time A in winning the above game is defined as:

AdvfA = |Pr[b = b′]− 1

2
|

If AdvfA is negligible, we say that our constructed verification
object is semantically secure and achieves indistinguishability.

Definition 2. Given a computationally efficient and keyed
function F: {0, 1}∗ × {0, 1}τ → {0, 1}s, for any probabilistic
polynomial time distinguisher D and an arbitrary length
string x ∈ {0, 1}∗, the advantage that D distinguishes Fk(x)
from a random string r of length s is defined as:

AdvFD = |Pr[D(r) = 1]− Pr[D(Fk(x)) = 1]|

where k ∈ {0, 1}τ and r is chosen at random uniformly from
{0, 1}s (the output of a random function). If F is a pseudo-
random function, then the advantage AdvFA is negligible under
the randomly chosen key k from {0, 1}τ .

Definition 2 means that no polynomial time algorithm
can distinguish the output of a pseudo-random func-
tion from the output of a real random function [31].
According to the construction of verification objects, it
is easy to see that achieving the indistinguishability of
verification objects needs to guarantee that the positions
in the Bloom Filter of the inserted elements are indis-
tinguishable, which can further reduce to guarantee the
indistinguishability of inserted elements (for a set Cw,
the inserted elements include data files and padding
elements). In Algorithm 1, we use the pseudo-random
function guarantee the indistinguishability of inserted
elements. We give the formal security proof as follows.

Theorem 1. If prf is a pseudo-random function, then our con-
structed verification object is semantically secure and achieves
indistinguishability in the random oracle model.

Proof. Suppose the adversary A has a non-negligible ad-
vantage ε (ε < 1) to win Ĝame, we can use A to construct
a distinguisher D who can distinguish the output of
the pseudo-random function from the output of a real
random function with a non-negligible advantage.

According to the Algorithm 1 denoted as f0, we
construct another algorithm Algorithm 1∗ denoted as f1.
The only difference between them is that Algorithm 1∗

uses a random function rrf : {0, 1}∗ → {0, 1}s to replace
the pseudo-random function prfk used in f0. Essentially,
prfk and rrf are modeled the random oracles that D
has access to. D accepts the algorithm fx, x ∈ {0, 1}
and its goal is to determine whether x = 0 or whether
x = 1. To do this, D emulates the game Ĝame for A, and
observes whether A succeeds or not. If A succeeds then
D determines x = 0; otherwise, x = 1.
D is given the algorithm fx and A chooses two file sets

Cw1
and Cw2

. D randomly chooses a bit b ∈ {0, 1} with
probability 1

2 and invokes fx(Cwb) to output V Owb and
then sends V Owb to A. A outputs a bit b′ and D outputs a
guess x′ for x. Since A has a non-negligible advantage ε
to succeed in the game Ĝame (i.e., the output b′ satisfies
b′ = b), correspondingly, D also has advantage ε to
determine the guess x′ = x = 0. That is, D can dis-
tinguish the output V Owb of f0(Cwb) (using the pseudo-
random function prfk under the key k) from f1(Cwb)
(using the real random function rrf ) with the non-
negligible advantage ε. Since V Owb contains |Cw|max (let
|Cw|max = α) elements after padding , for each element
c, assume that the advantage that D distinguishes prfk(c)
from rrf(c) is ε′, we have:

ε′ · ε′... · ε′︸ ︷︷ ︸
α

= ε⇒ ε′ = α
√
ε

Since ε is non-negligible, the advantage α
√
ε is also non-

negligible. Therefore, if A wins the game Ĝame with a
non-negligible advantage ε, then D distinguishes the out-
put of the pseudo-random function prfk from the output
of the real random function rrf with the non-negligible
advantage α

√
ε, which contradicts the Definition 2.

8.2 Unforgeability of Verification Object Signature
To guarantee the authenticity of the verification objects
themselves, a short signature scheme is proposed based
on [34] and [36]. We follow the threat model and security
definition of certificateless signature scheme by [36] and
omit the unforgeability proof of our scheme due to space
limitations. Please refer to [36] for detail security proofs.

8.3 Security of Verification Object Request
We design a secure verification object requesting tech-
nique by adopting Paillier encryption. During the w-
hole verification object request process, the cloud server
knows nothing about which verification object is request-
ed and which verification object is actually returned
since the Paillier encryption is a probabilistic public-key
encryption scheme.
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9 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the performance
of our scheme from four aspects: verification object
construction and query results verification, verification
object signature and authentication, verification informa-
tion request generation, and verification accuracy.

9.1 Experiment Setup

To evaluate the verification object construction time
and query results verification time, we generate 5 tex-
t file sets Fhardware and |Fhardware| = 200, Fmachine
and |Fmathine| = 400, Fsubject and |Fsubject| = 600,
Fprotocal and |Fprotocal| = 800, Fnetwork and |Fnetwork| =
1000, respectively. For example, Fhardware denotes a
set of text files containing the keyword hardware with
the cardinality 200. All these text files are random-
ly picked up from the real data set RFC (Request
For Comments Database) [41]. We encrypt the 5 file
sets using AES to get their corresponding ciphertext
set Chardware, Cmachine, Csubject, Cprotocal, Cnetwork. Ob-
viously, |Cnetwork|max = |Cnetwork| = 1000.

Recall that each verification object is composed of
a Counting Bloom Filter and a random elements pad
region, if we set the number of hash functions to be
l = log 1

2 0.01
= 7 and the number of counters in Counting

Bloom Filter to be m = 1000 log0.6185 0.01 = 1000 ×
9.585 = 9585, then the false positive is less than 0.01.
We expand the Counting Bloom Filter from m = 9585
to n = 12085, the last 2500 counters are regarded as
pad region. Thus, the size of each verification object is
about 6KB (12085 × 4 = 48340 bits). In addition, we
use HMAC-MD5 with a 128 bits key to instantiate the
pseudo random hash function prfk().

We implement our verification object signature and
authentication scheme based on Java library of the
Pairing-Based Cryptography Library (JPBC) [42] and
choose Type A elliptic curve group with 160-bit prime
order, which can achieve 1024-bit discrete log security.
To implement secure verification object request, we use
Pailier Encryption for request information encryption,
the secret key is set to be 512 bits.

In our experiments, we use Java language to imple-
ment all programs. The client side is an Inter Core i5-
6200U 2.3GHz computer with 4GB RAM running win-
dows 7. The cloud environment is simulated by using
the Dell blade M610 running Linux Centos5.8 OS, which
has 4 processor cores and supports 8 parallel threads.

9.2 Performance of Verification Object Construction
and Query Results Verification

Fig. 4(a) shows the time cost of verification object gen-
eration for different data files set with different number
of data files, we can observe that the size of different
data files set has little influence on the time cost of
verification object generation. For example, the time cost
of generating V Ohardware (94ms) and the time cost of
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Fig. 4. (a) The time cost of verification object generation
with different set of data files containing a certain key-
word. (b) The time cost of correctness and completeness
verification with different number of data files in a query
results set.

generating V Onetwork (99ms) is almost equal, though
the size of Cnetwork is five times as large as that of
Chardware. The reason is that, in our scheme, generating
a verification object is mainly determined by HMAC-
MD5 operations, which are involved in both data file
insertions and pads. For each data files set, the less the
number of data files in the set is, the more random
elements is needed to pad for constructing its verification
object. Thus the total number of HAMC-MD5 operations
will keep the same for each set of data files containing
a certain keyword. In addition, the execution time is
almost zero of 7 hash functions in H when hashing
a small string of length 128 bits. In experiments, the
random pad elements are also picked up from RFC
randomly for each verification object.

Fig. 4(b) shows the time cost of query results cor-
rectness and completeness verification. In experiment,
due to without considering the secure query scheme,
we artificially formulate 9 different query results sets
Rnetworks with increasing number of data files and step
length 100 and use the constructed verification object
V Onetwork to verify their correctness and completeness.
We can observe that the time cost of correctness and
completeness verification is linearly increasing with the
increase of the number of data files in the query results
set and the completeness verification needs to consume
a little more time than correctness verification due to
deletion operations of elements in Bloom Filter.

9.3 Performance of Verification Object Signature
and Authentication

In this section, we estimate the time cost of the verifica-
tion object authentication. The time cost of all operations
used for running the experiments based on the JPBC
library and our software/hardware setting is shown in
Table 3.

Table 4 shows the time cost of signature and authenti-
cation for verification object. We can see that a data own-
er needs to consume about 53ms to perform a signature
on each verification object and a data user needs about



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2709318, IEEE
Transactions on Cloud Computing

12

TABLE 3
Time Cost of Operation

Notations Descriptions Time Cost (ms)
EG1

exponentiation operation in G1 ≈ 42
MG1

multiplication operation in G1 < 1
AZq addition operation in Zq < 1
H2 hash function {0, 1}∗ × G1 → Z∗

q ≈ 11
P pairing operation ≈ 46

TABLE 4
Time Cost for Each Verification Object

Cost time (ms)
Signature H2 +AZq + EG1

53
Authentication H2 + EG1

+MG1
+ 2P 145

145ms to finish the verification object authentication.

9.4 Performance of Verification Object Request

Recall that a data user securely obtains the desired
verification object by three steps, during the whole pro-
cess, the Paillier encryption is used. First, the data user
encrypts request information according to the requested
keyword and keywords dictionary W . Second, the cloud
server generates encrypted desired verification object
according to submitted request information and the out-
sourced verification objects set {(σ||V O)w}w∈W . Third,
the data user decrypts the encrypted desired verification
object returned by the cloud server. Table 5 shows the
time cost of all encryption/decryption operations used
for implementing our scheme, where E,D denotes a
Paillier encryption and a Paillier decryption, respectively,
and x denotes a verification object.

Fig. 5(a) shows the time cost of verification object
request information generation for the data user, which
is linearly increasing with the increase of the number
of keywords in W . In this process, |W | − 1 operations of
E(0) and one E(1) operation are involved, when varying
the size of the dictionary from 10 to 100 with step length
10, the time cost changes from about 70ms to about
700ms, correspondingly. Fig. 5(b) shows the time cost
of decrypting a desired verification object for data user.
The process only includes one D(x) operation, which
generally consumes 15ms in our experiments. We can
observe that the size of keyword dictionary W has no
influence on time cost of the desired verification object
decryption.

Fig. 6 shows the time cost of generating encrypted
desired verification object for the cloud server, which is
linearly increasing with the increase of the dictionary
size (Fig. 6(a)) and is not affected by the number of
data files contained in the verification object when fixing
the dictionary size (Fig. 6(b)). In the encryption process,
|W | − 1 operations of E(0)x, one E(1)x operation, and
|W | − 1 operations of E(x) · E(x) are involved in the
cloud server side. When setting the number of threads
to be 1 and varying the size of the dictionary from 10

TABLE 5
Time Cost of Operation

Notations Descriptions Cost (ms)
E(1), E(0) Paillier encryption of plaintext 1 and 0 ≈ 7
E(1)x, E(0)x exponentiation operation of ciphertext ≈ 12
E(x) · E(x) multiplication operation of ciphertext < 1

D(x) Paillier decryption ≈ 16
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Fig. 5. (a) The time cost of verification object request
information generation with different number of keywords
in the keyword dictionary W . (b) The time cost of the de-
sired verification object decryption with different number
of keywords in the keyword dictionary W .

to 100 with step length 10, the time cost changes from
about 122ms to about 1.25s. We also observe that the
time cost can be reduced remarkably by increasing the
number of threads when the programs are run in a
parallel computing environment.

9.5 Verification Accuracy
Essentially, the constructed verification object is the
Bloom Filter, which can incur the false positive. This
means that our scheme may cause incorrect query re-
sults to pass the correctness verifications. To numerically
evaluate the verification accuracy, we first define several
verification Events in Table 6. Given a returned query re-
sults set Rw of the query keyword w and corresponding
verification object V Ow, for each result c ∈ Rw, if a veri-
fication Event occurs, then the Event is set as 1; obviously,
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Fig. 6. The time cost of generating encrypted desired
verification object for cloud server: (a) for different number
of keywords in the keyword dictionary W , and (b) for dif-
ferent number of data files in Cw with the fixed dictionary,
|W | = 70.
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TABLE 6
Events of Result Verification

Event Description
tp (True Positive) The correct query result pass verification.
fp (False Positive) The incorrect query result pass verification.
fn (False Negative) The correct result does not pass verification.

1 2 3 4 5 6 7
3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

 

 

%

T h e  n u m b e r  o f  h a s h  f u n c t i o n s  i n  B l o o m  F i l t e r

 p r e c i s i o n
 c o r r e c t _ r a d i o

(a)

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
9 7

9 8

9 9

1 0 0

1 0 1

1 0 2

 

 

%

T h e  n u m b e r  o f  i n c o r r e c t  q u e r y  r e s u l t s  i n  R n e t w o r k  

 p r e c i s i o n
 C o r r e c t _ r a d i o

(b)

Fig. 7. Evaluation of verification accuracy: (a) for different
number of hash functions in Bloom Filter, Rnetwork con-
tains 300 correct query results and 500 incorrect query
results, and (b) for different number of incorrect query
results in Rnetwork with the fixed hash functions (l = 7),
Rnetwork contains 300 correct query reuslts.

for each result, these events are independent each other.
We define the two metrics correct radio =

∑
tp∑

tp+
∑
fn

and precision =
∑
tp∑

tp+
∑
fp to evaluate the verification

accuracy, where
∑

denotes the total number of occur-
rences of an event when using V Ow to verify Rw. We
artificially formulate the query results set Rnetwork based
on the data files set Cnetwork as the experiment data
set. Correspondingly, the verification object is V Onetwork.
Fig. 7 shows the verification accuracy of our scheme.

Fig. 7(a) and Fig. 7(b) show the correct radio always
keeps 100%. This is because that Bloom Filter does not
introduce false negatives which means that our scheme
can guarantee all correct results in Rnetwork to be able to
correctly pass verifications (

∑
fn = 0 and

∑
tp = 300).

On the other hand, from the Fig. 7(a), we can see that,
when the number of the hash functions of Bloom Filter
is set as 1, our scheme causes about 420 incorrect results
to pass verifications (

∑
fp = 420) and thus leads to a

very low verification precision =
∑
tp∑

tp+
∑
fp = 300

300+420 =

41.7%; precision gradually increases with the increasing
number of hash functions and approximatively achieves
300

300+4 ≈ 98.7% when the number of hash functions is
set to the optimal value l = 7. Fig. 7(b) demonstrates
that though the precision has the trend of decrease with
the increases of the number of incorrect query results in
Rnetwork, it is not less than 98% when the number of hash
function is set to the optimal value l = 7 even Rnetwork
contains the large number of incorrect results. For the
very few incorrect query results that pass verifications,
the data user can delete them after decrypting.

10 CONCLUSION

In this paper, we propose a secure, easily integrated,
and fine-grained query results verification scheme for
secure search over encrypted cloud data. Different from
previous works, our scheme can verify the correctness
of each encrypted query result or further accurately
find out how many or which qualified data files are
returned by the dishonest cloud server. A short signature
technique is designed to guarantee the authenticity of
verification object itself. Moreover, we design a secure
verification object request technique, by which the cloud
server knows nothing about which verification object
is requested by the data user and actually returned by
the cloud server. Performance and accuracy experiments
demonstrate the validity and efficiency of our proposed
scheme.
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